
BGAS-Zeno: Secure Capability
Platform Manual

Version 1.1

info@securemicro.com

April 5 , 2024

1

mailto:info@securemicro.com

Contents

1 Introduction 3

1. Scope and Intended Audience . 3

2. Platform Description . 3

42 Getting Started with the BGAS-Zeno Board

1. System Boot-up . 4

2. Executing Built-in Examples . 5

3. BGAS-Zeno IDE . 7

1. Code-Editor Window . 8

2. Terminal Window . 10

123 Capability-Aware Software Development

1. Capability Library and API . 12

2. Application Example 1 . 14

3. Application Example 2 . 16

204 Zeno Capability Model

1. Capability Definition . 20

2. Capability Operations . 20

3. Capability Metadata Format . 21

BGAS-Zeno: Secure Capability Platform Manual 1.1 3

1 Introduction

1. Scope and Intended Audience

This manual describes the BGAS-Zeno capability software development board and how to use it.
The intended audience for this manual is software developers interested in capability-aware appli-
cation development. For more detailed information about the BGAS-Zeno ISA and architecture,
see the BGAS-Zeno ISA specification. Visit the BGAS-Zeno Homepage for more information about
the BGAS-Zeno Capability Platform.

2. Platform Description

The BGAS-Zeno Platform provides a complete hardware/software system stack for capability-
aware application development. The BGAS-Zeno IDE provides a development environment to
write applications for the BGAS-Zeno system. The IDE includes the capability-aware Zeno-llvm
tool-chain to compile executables targeting the BGAS-Zeno architecture. Executables created in
the IDE are downloaded to the board and run as user-mode applications in the Linux operating
system (OS). The BGAS-Zeno CPU executes capability-aware applications, enforcing capability
access permissions in hardware. Figure 1 describes the layout of the BGAS-Zeno board.

Figure 1: BGAS-Zeno Secure Software Development Board layout.

3

https://securemicro.com/
https://securemicro.com/

4 BGAS-Zeno: Secure Capability Platform Manual 1.1

2 Getting Started with the BGAS-Zeno Board

1. System Boot-up

Figure 2: Basic connections to get started with the BGAS-Zeno board.

1. Connect the 12V DC power adapter to the barrel jack connector of the BGAS-Zeno board.
Push the red power switch next to the barrel jack to power on the board. LEDs next to the
power jack indicate power for each of the 3.3V and 2.5V rails.

2. Connect the included USB Mini-B cable to the USB Mini-B connector on the board. Plug the
other end into your workstation. On Ubuntu 22.04, the board will appear as a serial device
such as /dev/ttyUSB0.

3. On your workstation, Open the Secure Micro Technologies BGAS-Zeno IDE to connect to
the BGAS-Zeno board. Alternatively, you may use an application such as minicom to com-
municate with the board over the serial port.

4. Wait up to 180 seconds for the BGAS-Zeno board to complete the boot process. Once
complete, the board will print a welcome banner and provide access to a Linux command
prompt with support for common utilities and built-in example applications. The output of
a complete boot sequence is shown in Figure 3.

Figure 3: The BGAS-Zeno system output after completing the boot process.

4

BGAS-Zeno: Secure Capability Platform Manual 1.1

2.2 Executing Built-in Examples

5

The BGAS-Zeno system includes several built-in example applications to demonstrate capability
features. The following directory tree shows a subset of the Linux directory structure on the
BGAS-Zeno system with the built-in example applications. Use the Linux cd and ls commands to
navigate the directory structure and execute the examples.

/root
capability example.exe
cpi.exe
hello world.exe
benchmarks

riscv
double free.c
double free.exe
oob read.c
oob read.exe
oob write.c
oob write.exe

zeno
double free.c
double free.exe
oob read.c
oob read.exe
oob write.c
oob write.exe

• The /root directory serves as the home directory for the
built-in examples.

• The capability example.exe demonstrates capability
creation, derivation, and revocation.

• The cpi.exe computes the Cycles-per-Instruction and
prints the number of cycles and instructions committed
since boot.

• The hello world.exe prints a “hello world” message.

• The benchmarks directory includes memory vulnerability
benchmarks with and without capability protections.

• Inside benchmarks, the riscv directory includes the non-
capability-aware versions of the benchmarks.

• The zeno directory includes versions of the benchmarks
compiled with capability support.

• The double free.exe executables demonstrate a temporal
memory safety vulnerability with and without capability
support.

• The oob read.exe executables demonstrate a buffer out-
of-bounds read vulnerability with and without capability
support.

• The oob write.exe executables demonstrate a buffer out-
of-bounds write vulnerability with and without capability
support.

5

6 BGAS-Zeno: Secure Capability Platform Manual 1.1

After the BGAS-Zeno system has booted, executing the capability-example.exe will produce
the following output:

6

BGAS-Zeno: Secure Capability Platform Manual 1.1

2.3 BGAS-Zeno IDE

7

The BGAS-Zeno IDE provides a complete environment to develop capability-aware applications
and execute them on the BGAS-Zeno system. A screenshot of the IDE is shown in Figure 4. The
IDE includes three main windows: (1) the code-editor window for writing applications, (2) the share
window for downloading executables to the BGAS-Zeno system. and (3) the terminal window for
interacting with the system and executing applications.

Figure 4: BGAS-Zeno IDE code-editor window.

7

8 BGAS-Zeno: Secure Capability Platform Manual 1.1

2.3.1 Code-Editor Window

The menu bar of the code editor window, shown in Figure 5, provides several tools and configuration
options. Each menu item is described in detail below.

Figure 5: BGAS-Zeno IDE code-editor window header bar.

Click the Compile button to compile the application
in the code-editor window using the selected compiler.
Compiler output is shown in the console output tab.
To transfer executables to the selected BGAS-Zeno
system, click the upload button. The compiled exe-
cutable will automatically be written to /root.

Select BGAS-Zeno in the board selection drop-down
menu to compile binaries for the BGAS-Zeno system.

Use the compiler selection drop-down menu to select
between the Zeno-LLVM compiler with capability sup-
port and the RISC-V GNU GCC compiler without ca-
pability support.

Optionally enter additional flags to pass to the com-
piler during compilation.

8

BGAS-Zeno: Secure Capability Platform Manual 1.1 9

The editor window provides an editable text area to write code. The editor supports copy/paste,
foldable function segments and a minimap providing an overview of the entire code. Dynamic
tabs in the code editor allow users to edit up to five programs at once. Double click on the tab
to rename it. Clicking the X on the tab closes and deletes the tab (minimum tabs allowed is 1).
The + button at the right end adds new tabs (maximum tabs allowed are 5). Content written in
the editor window is autosaved every five seconds. The * mark in a tab name indicates that the
content of the tab is unsaved. The console output tab shows compiler output, including errors and
warnings. The serial output tab shows the program output when executed on the selected board.

9

10 BGAS-Zeno: Secure Capability Platform Manual 1.1

2.3.2 Terminal Window

The terminal window provides an interface to interact with the BGAS-Zeno system. Figure 6 shows
the menu bar visible in the terminal window. Each menu item is described in detail below.

Figure 6: BGAS-Zeno IDE terminal window header bar.

Use the connect button to connect to the BGAS-Zeno
system’s serial port. Click the Start Receiver Button
(Start Rx) to initialize the BGAS-Zeno system for file
transfers. The Receive Button is used to start receiving
data from the BGAS-Zeno system. Clicking the Reset
Button disconnects the BGAS-Zeno system and closes
the receiver.

Enter the serial port the BGAS-Zeno board is con-
nected to in the serial port input field.

Enter “115200” as the Baud Rate when connecting to
the BGAS-Zeno system.

10

BGAS-Zeno: Secure Capability Platform Manual 1.1 11

Figure 7 shows the BGAS-Zeno IDE terminal window. Serial data received from the BGAS-Zeno
system is displayed as it is received by the IDE. Commands can be written after the ?¿ symbol. To
send the command to the board, press the enter key on the keyboard. Then, Data entered in the
command box is transmitted to the BGAS-Zeno system. Resulting output will be shown on the
terminal screen above the ?¿ symbol.

Figure 7: BGAS-Zeno IDE terminal window.

11

12 BGAS-Zeno: Secure Capability Platform Manual 1.1

3 Capability-Aware Software Development

1. Capability Library and API

A user-level capability library (libcap runtime.a) provides a C language Application Program-
ming Interface (API) to develop capability-aware software applications on the BGAS-Zeno architec-
ture. API functions provide access to hardware features not directly supported by non-capability-
aware system software stacks, such as RISC-V OpenSBI, Linux and the GNU GCC compiler. The
capability library provides all the support necessary to develop user-level capability-aware appli-
cations for the BGAS-Zeno architecture. Table 1 describes each API function and its C language
arguments and return type.

Table 1: BGAS-Zeno User-Level API.

API Function Description

Capability myCapability; Capability declaration. With The Zeno compiler, The
declared variable will behave the same as a void pointer.

Capability_id myCapability_id; Capability ID declaration. Use the declared variable to
store a capability’s capability ID, i.e the value stored in
the capability register file.

Capability c_create(
unsigned long min,
unsigned long max,
unsigned long perm

);

Create Capability function prototype. Capability access
permissions and min/max address bounds are passed as
arguments. The min and max arguments are 64-bit un-
signed integers representing the pointer portion of a mem-
ory reference. The perm argument is 64-bits of permis-
sion values. Currently only read (bit 2), write (bit 1), and
execute (bit 0) permissions are supported. If successful,
metadata structures are updated and a new capability is
returned.

Capability c_derive(
unsigned long min,
unsigned long max,
unsigned long perm,
Capability c_parent

);

Derive Capability function prototype. The parent capa-
bility, capability access permissions and min/max address
bounds are passed as arguments using the same format
as the c create function. Requested access permissions
are validated to ensure monotonically decreasing permis-
sions. If the validation is successful, a new capability is
created and added to the parent capability’s child list.
Metadata structures are updated with the new capabil-
ity metadata and the new capability is returned.

12

BGAS-Zeno: Secure Capability Platform Manual 1.1 13

Table 1: BGAS-Zeno User-Level API. (Continued)

API Function Description

void c_revoke(Capability c); Revoke Capability function prototype. Recursively re-
voke the given capability and all of its children. The ac-
cess permissions are removed from metadata structures,
preventing future access with the capability. However,
the capability IDs in memory and on-chip are not invali-
dated. Software may still attempt memory accesses with
them, however all accesses will fail because permissions
associated with that capability have been removed.

void c_revoke(Capability c); Get Capability ID function prototype. A helper function
to get the capability ID of a given capability.

Capability convert_id(
Capability_id id

);

Convert Capability ID function prototype. A helper func-
tion to move the given capability ID into the capability
register file. A capability with the given ID is returned.
Note that if the given ID is invalid, the returned capabil-
ity will also be invalid.

Capability merge_ptr_id(
void *ptr,
Capability_id id

);

Merge pointer and capability ID into a single capability.
This function allows a programmer to associate an ar-
bitrary pointer with a capability ID. While any pointer
value can be given, only pointer values within the ca-
pability’s access permission range will be able to access
memory.

void capability_init(); Helper function to setup capability support in a user level
application executing in a non-capability-aware operating
system.

void capability_exit(); Helper function to clean up capability state in a user level
application executing in a non-capability-aware operating
system. This function also clears the capability register
file to prevent non-capability-aware applications and op-
erating systems from accidentally using stale capability
values.

void clear_capabilities(); Helper function to clear the capability register file. A ca-
pability with full system access is written to each capa-
bility register so non-capability aware code may execute.

void save_capabilities(
Capability_id *c

);

Helper function to save the capability ID in each capa-
bility register. The argument c is a pointer to an array
of 32 capability ID values.

13

14 BGAS-Zeno: Secure Capability Platform Manual 1.1

Table 1: BGAS-Zeno User-Level API. (Continued)

API Function Description

void restore_capabilities(
Capability_id *c

);

Helper function to restore a capability ID value to each
capability register. The argument c is a pointer to an
array of 32 capability ID values to be written to the ca-
pability register file.

void print_capabilities(); Helper function to restore print the value of each capa-
bility ID in the capability register file.

int zeno_printf(
const char *format, ...

);

Zeno Printf function prototype. This function provides a
Capability-aware implementation of the printf function.
The function takes the same arguments as printf. Cur-
rently only a subset of the format specifiers are supported,
including "%d", "%u", "%c", "%s", and "%l". Other for-
mat specifiers will print an error instead of a formatted
value.

The Zeno-llvm compiler provides support for 128-bit pointers formed by BGAS-Zeno capabilities. A
customized ABI is necessary to support function calls with BGAS-Zeno 128-bit capability memory
references. Compiling appliations in the BGAS-Zeno IDE will automatically target the BGAS-Zeno
ABI and link binaries with the capability library.

The capability library provides limted support for capabiltiy-aware implementation or wrappers of
C standard library features (e.g. zeno printf()). Calling non-capability-aware library functions
from capability-aware functions will likely result in capability access violations, terminating the
application. Wrapers for non-capability aware code can be created with the save capability(),
clear capability(), and restore capability() functions.

3.2 Application Example 1

The application in Listing 1 demonstrates manual capability creation and revocation. Manual
control allows a programmer to reduce access permissions associated with a capability, for example,
shrinking the access bounds or removing write permissions.

1 #include "cap_user.h"
2 #define ARR_SIZE 16
3

4 int arr[ARR_SIZE];
5 int *arr_ptr;
6 int sum = 0;
7

8 int main() {

14

BGAS-Zeno: Secure Capability Platform Manual 1.1 15

9 capability_init ();
10

11 arr_ptr = arr;
int *arr_full = (int *)c_create(arr_ptr , arr_ptr+ARR_SIZE , 6);
arr_full = (int *)merge_ptr_id(arr_ptr , get_id(arr_full));

12

13

14

15 for(int i=0; i<ARR_SIZE; i++) {
arr_full[i] = i;

}
16

17

18

19 for(int i=0; i<ARR_SIZE; i++) {
sum += arr_full[i];

}
20

21

22

23 /* Attempt to write out-of-bounds */
/* arr_full[ARR_SIZE] = -1; */

c_revoke(arr_full);
capability_exit ();
return sum;

24

25

26

27

28

29 }

Listing 1: Capability Creation Example.

The following code snippets step through the example application from Listing 1 to highlight
important aspects of capability-aware application development on the BGAS-Zeno platform.

1 #include "cap_user.h"

Include the cap user.h header file in each application to define the capability library function
prototypes described in Table 1.

4 int arr[ARR_SIZE];
5 int *arr_ptr;

Line 4 of the program declares an integer array arr. By default, the Zeno-llvm compiler will use
the capability initialized by the OS for global variables like arr. For operating systems that are not
capability-aware, such as Linux, a capability with full access to the application’s virtual address
space is used. Line 5 creates a pointer arr ptr to point to the array arr. The arr ptr is passed
as a function argument instead of arr to prevent compiler warnings.

8 int main() {
9 capability_init ();

When developing capability-aware applications for non-capability-aware operating systems, call the
capability init() function before using any capability features.

12 int *arr_full = (int *)c_create(arr_ptr , arr_ptr+ARR_SIZE , 6);

15

16 BGAS-Zeno: Secure Capability Platform Manual 1.1

To support capability-aware applications in operating systems that are not capability-aware, pro-
grammers may manually create capabilities. Line 12 creates a capability with read/write permis-
sions and access bounds that match the size of the array. The c create() function returns a
capability (i.e. void pointer) with a valid capability ID and a NULL pointer value.

13 arr_full = (int *)merge_ptr_id(arr_ptr , get_id(arr_full));

To set a useful capability pointer value, call the merge ptr id() function to associate the capability
ID and pointer value. The compiler will ensure the capability ID and pointer value in the returned
capability are used together for future memory accesses.

26 c_revoke(arr_full);

When a capability is no longer needed, it may be revoked with a call to c revoke(). Revoking a
capability will also recursively revoke all capabilities derived from the original revoked capability.

27 capability_exit ();
28 return sum;
29 }

Capability-aware applications must call the capability exit() function before returning from
main() to clean up capability state that may interfere with a non-capability-aware operating system.
If executing in a capability-aware OS, the OS will clean up the capability state instead.

Executing the example application produces the following output. Print statements for each capa-
bility create and revoke are generated automatically by firmware to assist with debugging. Execut-
ing echo $? displays the return value of the program.

3.3 Application Example 2

The following code represents a complete out-of-bounds read application example, demonstrating
capabilities catching a buffer overflow error. In this example, capabilities are automatically created
with by the capability library function zeno malloc()

1 #include "cap_user.h"

16

BGAS-Zeno: Secure Capability Platform Manual 1.1 17

2

3 int main() {
4 capability_init ();
5

6 zeno_printf("\nStarting test: OOB Read\n");
7

8 int test_status = 1;

char *public = (char *)zeno_malloc(6);
zeno_strcpy(public , "public");

char *private = (char *)zeno_malloc(14);
zeno_strcpy(private , "secretpassword");

9

10

11

12

13

14

15

16 int offset = private -public;
17

18 zeno_printf("Printing characters of public array\n");
for(int i=0;i<6;i++) {

zeno_printf("%c", public[i]);
}
zeno_printf ("\n");

19

20

21

22

23

24 zeno_printf("Printing characters of private array from
array\n");
for(int i=0;i<14;i++) {

zeno_printf("%c", public[i+offset]);
if(public[i+offset] == private[i])

test_status = 0;
}
zeno_printf ("\n");

public

25

26

27

28

29

30

31

32 if(test_status == 0)
zeno_printf("Test Failed: OOB Read\n\n");33

34

35 capability_exit ();
return 0;36

37 }

Listing 2: Capability-Aware Out-of-Bounds Read Example.

The following code snippets step through the example application from Listing 2 to demonstrate
capability usage with BGAS-Zeno capability library functions that automatically generate capabil-
ities.

1 #include "cap_user.h"

Include the cap user.h header file in each application to define the capability library function
prototypes described in Table 1.

17

18 BGAS-Zeno: Secure Capability Platform Manual 1.1

3 int main() {
4 capability_init ();

Just as in Example 1, capability init() must be called before using capability features.

6 zeno_printf("\nStarting test: OOB Read\n");

10

Capability-aware implementations and wrappers of standard C functions are prefixed with “zeno ”,
but otherwise use the same arguments. Reference Table 1 for a complete list of supported functions.

char *public = (char *)zeno_malloc(6);

The zeno malloc() function automatically creates a capability of the requested size and associates
it with the returned pointer. The Zeno-llvm compiler ensures the capability ID is used for all
memory accesses with the new pointer.

25 for(int i=0;i<14;i++) {
zeno_printf("%c", public[i+offset]);
if(public[i+offset] == private[i])

test_status = 0;
}

26

27

28

29

The for loop in lines 25-29 creates the out-of-bounds read violation. The public pointer is indexed
beyond the original six bytes allocated with zeno malloc(), triggering a capability access violation
which terminates the application.

35 capability_exit ();
return 0;36

37 }

As in Example 1, capability exit() must be called before returning from main().

Executing the example application without capability protections produces the following output.
Note that the secret string is successfully printed using the public pointer that was not intended
to reference that data.

Executing the example application with capability protections produces the following output. When
attempting to print the secret data with the public capability, a capability fault is raised by the
hardware and the application is terminated. Capability print statements generated by firmware
may appear out-of-order with respect to strings printed with zeno printf() because of buffering
performed by the operating system.

18

BGAS-Zeno: Secure Capability Platform Manual 1.1 19

The dump info provided by Linux includes the faulting program counter value (epc), the capa-
bility ID that caused the fault badaddr, and the type of fault (cause). See the BGAS-Zeno ISA
specification for more details about the cause codes.

19

https://securemicro.com/

20 BGAS-Zeno: Secure Capability Platform Manual 1.1

4 Zeno Capability Model

1. Capability Definition

In the BGAS-Zeno architecture, every memory operation is a capability-based memory access.
Capabilities attach metadata to each memory operation. Metadata stores access permissions as-
sociated with the given memory reference. Hardware enforces the access permissions, preventing
software vulnerabilities related to memory safety.

The BGAS-Zeno architecture uses an extended addressing model to encode a Capability ID in each
memory reference. Extended memory references are formed from two separate 64-bit components,
a memory pointer and capability ID. The memory pointer portion of the reference represents a
memory address. The capability ID component of the address serves as an access token, referencing
access permissions in metadata. Figure 8 depicts a complete memory reference in the BGAS-Zeno
architecture.

Figure 8: BGAS-Zeno Capability-based memory reference.

Each capability provides read, write, or execute access permission to a range of addresses. Any
software context can request the creation of a new isolated capability from hardware. In BGAS-
Zeno, capabilities are hierarchical, allowing a new capability with monotonically decreasing access
permissions to be derived from an existing capability. Access permissions provided by a capability
may be revoked, preventing further data access with the revoked capability or any capabilities
derived from it.

2. Capability Operations

The BGAS-Zeno architecture provides three capability manipulation operations, in addition to the
instructions described in the BGAS-Zeno ISA. Future hardware implementations of these opera-
tions will refine their functionality. Therefore, to ensure compatibility with future versions, it is
recommended to use the API operations described in Section 3 to invoke these operations instead
of directly executing the dedicated hardware instructions.

• Create Capability - Creates a new capability to serve as an isolated container of memory
with user requested access permissions and min/max address ranges. The new capability ID
is written to the capability register file for use by the application.

20

https://securemicro.com/

BGAS-Zeno: Secure Capability Platform Manual 1.1 21

• Derive Capability - Creates a new capability with permissions less than or equal to the
parent capability it was derived from. Permissions are requested by the user and validated
in hardware. The new capability ID is written to the capability register file for use by the
application.

• Revoke Capability - Deletes access permissions associated with a capability and all of the
capabilities derived from it. However, the associated capability IDs in memory and on-chip
are not invalidated. Future memory accesses may be attempted with these stale capability
IDs, causing access faults because of invalid permissions.

4.3 Capability Metadata Format

Capability Metadata is only directly accessible to hardware and trusted firmware. The BGAS-
Zeno architecture separates Metadata into fixed size and variable size components. Each capability
requires 64 Bytes of fixed-size Metadata, divided into 8 Byte Fields. The BGAS-Zeno Metadata
format is described by Table 2.

Table 2: BGAS-Zeno Metadata format.

Offset Field Name Description
0x00 Minimum Address The minimum address accessible to the capability.

0x08 Maximum Address The maximum address accessible to the capability.

0x10 Permissions 64-bits of access permissions for the given address range.
Bits 2, 1, and 0 represent read, write, and execute respec-
tively. Bits 63-3 are reserved for future use.

0x18 Translation Info Reserved for future per-capability address translation sup-
port. Future versions will use this field to reference an ad-
dress translation page table.

0x20 Root Capability ID The capability ID of the capability at the root of the capa-
bility hierarchy the Metadata is a part of.

0x28 Parent Capability ID The capability ID of the capability that derived the capabil-
ity the Metadata is associated with.

0x30 Children Pointer A memory pointer to a list of capability IDs derived from
the associated capability.

0x38 Reserved Reserved for future use.

Currently, variable sized Metadata stores only the list of children capabilities. Future versions of
BGAS-Zeno will extend support to include space for virtual address translation page tables and
potentially other variable sized data structures.

21

What is the Box?
§ BGAS-Zeno Development

Board
§ 12V Power Supply
§ USB Mini-B Cable

